3D printing has opened the doors to an exciting world of possibilities. The 3D models that you are accustomed to visualizing on the digital canvas can now be experienced in physical forms. You can get real life models of the shapes that you have designed on the software.

To ensure that the results are flawless in the method of 3d design, you need to learn how to prepare a 3D model for printing. Following the preliminary steps would help you to save your time, efforts, and money. For example, you need to ensure that the model is seamless and hollow from inside to consume less print material. Also, see whether or not it is having a non-manifold geometry.

Apart from that, you also need to check the surface normal and ensure that the model is converted. So, before you fire the print command, have a look at the article to get a thorough and detailed idea of preparing your 3D models for printing.

Thus, in this article, we’ll discuss the various steps involved in the process as well as some of the best software that can help with each step of your workflow. So, let’s get started.

What is 3D Printing?

3D printing is the process of creating 3D solid objects from a digital file. It employs an additive process where the object is developed by laying down successive layers of the desired material. You can see each layer as a thin cross-section of the object. Due to this reason, 3D printing is also referred to as additive manufacturing. Now, let’s move on to the steps required for preparing your model for three-dimensional printing.

Easy Steps to Prepare your Model for 3D Printing

The important milestones in the process of preparing the model for 3D printing are discussed below:

Step 1: Seamless Model

If you are engaging in traditional 3D modeling, your design would consist of numerous discrete and complex elements. For example, in Autodesk 3DS Max or Maya, you create the hair of character as a discrete geometrical unit. Such geometrical shapes are then collated in complex formation for the final outcome.

When preparing model for 3D printing, you need to deviate from this strategy. Your model cannot consist of such discrete elements in huge quantity. The model has to be a consolidated seamless mesh. Discrete elements can be printed separately and then pasted on the base model.

If you are designing a simple 3D printing character model, the process is enjoyable. But, if you had developed a model that was not initially meant for 3D printing or is a complex 3D model, then you need to carefully tweak the mesh. The topology of the model intended to be printed needs to be done with the utmost precision.

Step 2: Hollowed Model

3D printing material is expensive. To keep costs low, you must ensure that the model is not solid. Else, the quantum of print material used would be more. 3D print vendors often charge for printing in terms of volume. So, if the model is hollow from inside, you would have to pay less.

The 3D printer is not set to print hollow designs by default. So, despite your model being a hollow mesh in 3D software, it needs to be prepared for printing as hollow. This is because during conversion of model for printing, it is assumed to be solid.

To learn how to model hollow for 3D printing, follow the steps mentioned below:

  • Start with the 3D print preparation of your models by selecting the entire array of faces on the model’s surface
  • Carry out negative or positive extrusion of faces along the surface normal. You can go for negative extrusion as the exterior surface’s appearance remains unaltered. In Maya, you need to check the ‘Keep faces together’ option.
  • After extrusion, ensure that the geometry has not overlapped anywhere during the process. Examine critically and resolve any issues apparent to the eyes.
  • After extrusion, the model would have inner and outer shells. The distance within the shells would represent thickness of wall during printing of model. If you go for thicker walls, the model would last longer but you have to expend more. Decide the space between shells judiciously based on model’s purpose. Too less space is also not desirable. You have to adhere to the minimum thickness specification of the print vendor.
  • You must have a slit at the model’s bottom through which excessive print material can get out. The slit must be made without compromising the mesh’s original topology. During slit formation, ensure to bridge the rift between outer and inner shells

Step 3: Non-Manifold Geometry Elimination

During print modeling, you need to be careful with avoiding the non-manifold geometry. Non-manifold is representative of the edges shared among more than 2 faces. Such type of geometric 3D models shows up if the extruded edge or face is not subjected to proper repositioning.

The outcome is 2 identical geometrical elements sitting atop each other. The 3D printer gets confused with such geometry which results in distortion of shapes and incorrect printing.

Often, the non-manifold geometry surfaces when 3D modelers extrude faces, reposition them, then choose not to extrude, and then try to undo the extrusion action. 3D software recognizes extrusion as 2 different commands. One pertains to extrusion process and the other related to the face or edge repositioning.

Hence, for reversing the extrusion step, the undo command has to be issued twice. If you forget to do so, the model would fall prey to non-manifold geometry. Such mistakes are common with beginners.

However, the problem can be easily avoided. Since, the geometry is not apparent to eyes, it can be easily overlooked. You need to set it right once you take note of the problem. If you choose to fix the non-manifold geometry later on, it would become difficult to handle.

The process of identifying non-manifold faces is a tricky one. While working in Maya, you need to ensure that display settings opted by you allows the selection handle to appear at each polygon’s center in face selection mode. The handle is in the form of a circle or small square.

If the selection handle is visible directly at the edge’s top, it is indicative of the presence of non-manifold geometry while designing the 3D models. In that case, you can select the affected faces and then click Delete. If this process fails to yield the desired result, you can navigate to the Mesh menu and issue the Cleanup command. In the options box, select non-manifold. Non-manifold geometry may result from other factors apart from extrusion.

Step 4: Surface Normal-Checking

The surface normal or face normal symbolizes the directional vector sitting in perpendicular fashion to the 3D model’s surface. The surface normal is unique to each face. The normal faces outward in the direction that departs from model’s surface.

The problem occurs when the direction of the surface normal is inadvertently reversed while executing extrusion command during modeling process. Apart from extrusion, the problem can show up during usage of other modeling tools commonly used.

After reversal of the surface normal, the directional vector starts pointing towards model’s interior.

To fix the problem of reversed surface normal, you need to identify the existence of the issue in the first place. By default, you cannot view surface normal. To spot the problem, you will have to tweak certain display settings.

If you are working in Maya, navigate to View and then Lighting to deselect ‘Two-sided Lighting’. After you have disabled the same, all faces whose surface normal have been reversed become pitch black.

Next, select such faces and browse to Polygons menu for selecting Reverse from Normals.

It is a desirable practice to check the surface normal periodically during the designing process. Even if you are not planning to print the 3D model, this habit is recommended. In all 3D software, the process for setting right the surface normal is almost similar. The help manual of respective package can be checked for further guidance.

Step 5: File Conversion

Prior to uploading the model for printing, one final step you need to initiate is to ensure that the model is available in compatible file format. 3D printers usually accept files in the VRML97/2, OBJ, STL, Collada, and X3D formats. However, it would be prudent to check out with the print vendor to learn about the file format in which you have to dispatch the model.

It is to be noted that application formats commonly used like .max, .ma, and .lw cannot be used. Model in Maya needs to be exported as an OBJ or has to be converted in STL file format with external software. However, 3DS Max allows model to be exported in OBJ and STL formats alike. It is better to go with OBJ format because of the versatility you stand to enjoy during printing.

All print vendors have their specific preferences of using file formats in different industries. You need to adhere to the same for impeccable outcomes. Also, you can view the performance of printers for different formats which would help you choose the best 3D printer later on.

Step 6: Way Forward

Once you are done with the Maya mesh cleanup, it is time to get the models to 3D print. You will find many vendors offering 3D printing services. However, you have to carry out a bit of research to choose the best print partner. One of the best tips is to go through the samples put up on respective websites to get a feel of the product you are likely to get.

When you outsource 3D modeling, you need to explore the technical advantages offered by the vendor. Similarly, for 3D printing, you need to understand if the vendor has high end printer with high technical specifications. The finesse of final model that you would have in your hands would depend largely on technical brilliance of printer.

Once you are aware of the printer which is going to be used, go through the instructions meticulously. The permissible wall thickness is another thing that needs to be taken care of during the design of 3D print models. This is because if you choose to scale up or down the model, the wall thickness would increase or decrease accordingly. Wall measured in feet or meter would become abnormally thin when dimensionally reduced to inches. Now, let’s have a look at the different 3D printing software that can help you with the process.

10 Best 3D Printing Software that you must try

  1. MatterControl 2.0

    Best for: Beginners

    Price: Free

    System compatibility: Windows, Mac, Linux

    Functions: Slicer, Design, 3D Printer Host

    It is a CAD and 3D printing software having a remarkably well-structured interface. With its printer host functionality, you’ll get direct control over the printer and easily monitor the printing by connecting it with a USB. Besides, you can also slice the STL files to export them to an SD card for offline printing purposes.

  2. Cura

    Best for: Beginners

    Price: Free

    System compatibility: Windows, Linux, Mac

    Functions: Slicer, 3D Printer Host

    It is basically the benchmark software for Ultimaker 3D printer users. However, you can use it for other 3D printers as well. It is one of the most popular 3D printing slicers available in the market and is completely open-source. You can also extend it with the help of a plugin system.

  3. SliceCrafter

    Best for: Intermediates

    Price: Free

    System compatibility: Browser

    Functions: Slicer

    It is a browser-based slicer containing simple dialogs for uploading STLs. Aside from that, you can also paste the web links to pull the STL files for slicing. This will enable you to easily and quickly develop the g-code for printing purposes.

  4. PrusaSlicer

    Best for: Beginners

    Price: Free

    System compatibility: Mac, Windows, Linux

    Functions: Slicer

    PrusaSlicer has gained recent popularity due to its vast tunable settings. There are many improvements done on the original software, such as a reworked interface, handy presets for varied common materials, native support for the printer lineup of Prusa, etc.

  5. OctoPrint

    Best for: Intermediates

    Price: Free

    System compatibility: Raspbian (as OctoPi image), Mac, Linux, Windows

    Functions: Slicer, 3D Printer Host

    This is a web-based 3D printer host that provides full control over printing jobs as well as the printer itself. By combining it with a WiFi-enabled device and linking it to your 3D printer, you can remotely control your machine with the help of OctoPrint’s web interface.

  6. Slic3r

    Best for: Intermediates

    Price: Free

    System compatibility: Linux, Mac, Windows

    Functions: Slicer

    This open-source slicer software offers bleeding-edge feature, which isn’t found in any other software. While the 3D slicer didn’t receive any major updates, it still remains to be the base from which other slicers have developed.

  7. KISSlicer

    Best for: Intermediates

    Price: Free

    System compatibility: Browser

    Functions: Slicer

    It is one of the most sophisticated 3D printing software tools available in the market. Its free version will allow you to print with only one extruder. However, with the paid pro version, you can carry out multi-head printing. It is also considered a worthy alternative for 3D slicer software tools by some.

  8. Repetier-Host

    Best for: Intermediates

    Price: Free

    System compatibility: Mac, Linux, Windows

    Functions: 3D Printer Host, Slicer

    This open-source software provides excellent control over 3D printer control and can also help with slicing. It offers an all-in-one solution for multi-slicer support via plugins, multi-extruder support, and virtual FDM 3D printer support.

  9. 3DPrinterOS

    Best for: Beginners

    Price: Free and Paid. The pro version is available at $200.

    System compatibility: Windows, Raspberry Pi, Ubuntu, Mac

    Functions: Slicer, STL Repair, STL Editor, 3D Printer Host

    This software offers a cloud-based solution to 3D printer management. The comprehensive suite encompasses almost everything that can help with 3D printing, such as printer control, print job queuing and delegation, in-cloud syncing, and an app-based plugin system for STL repair and analysis.

  10. IceSL

    Best for: Intermediates

    Price: Free

    System compatibility: Linux, Windows

    Functions: Design, Slicer

    This remarkable software can be used both as a 3D slicer and a 3D modeling tool. The interface can be slightly intimidating to look at. However, it can enable nifty parametric modeling with a life preview at the center window. You will also find pre-configured slicing settings, which can even help beginners to perform easy and quick slicing.

After you have paid careful attention to all the aspects that we have mentioned here, you can get the best 3D printable models ready to be uploaded for printing. Besides, always remember to use a clean mesh that is conducive to smooth 3D printing. Following the above steps and choosing the best software will help you to carry out the process flawlessly.

In case any additional constraints are provided by your vendor, then make sure to consider it as well. They have experience in handling similar kinds of projects and utilizing their suggestions will help you in covering the job more successfully.

Reddit
Related Blog Posts
Contact Us